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We investigate analytically and numerically a Josephson junction on a finite domain with two
�-discontinuity points characterized by a jump of � in the phase difference of the junction, that is, a 0-�-0
Josephson junction. The system is described by a modified sine-Gordon equation. We show that there is an
instability region in which semifluxons are spontaneously generated. Using a Hamiltonian energy character-
ization, it is shown that the existence of static semifluxons depends on the length of the junction, the facet
length, and the applied bias current. The critical eigenvalue of the semifluxons is discussed as well. Numerical
simulations are presented, supporting our analytical results.
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I. INTRODUCTION

Josephson junctions are made of two superconductors
connected by a nonsuperconducting weak link. Interestingly,
a current can flow from one superconductor to the other even
when there is no potential difference, i.e., the Josephson su-
percurrent. Current technological advances can impose arti-
ficial shifts to the Josephson phase, such that the sign of the
critical current depends on the spatial variable.

The idea of having a shift in the gauge phase of a Joseph-
son junction was first proposed by Bulaevskii et al.1,2 It was
proposed that the presence of the magnetic impurities may
create a � shift to the Josephson phase, which has been con-
firmed recently.3 Presently, one can also impose a � phase
shift in a long Josephson junction using superconductors
with unconventional pairing symmetry,4,5 superconductor-
ferromagnet-superconductor �SFS� � junctions,6

superconductor-insulator-ferromagnet-superconductor �SIFS�
� and 0-� junctions,7,8 superconductor-normal metal-
superconductor �SNS� junctions,9 or using a pair of current
injectors.10 All these findings have promising applications in
information storage and information processing.11,12 This
system, in which neighboring facets of a Josephson junction
are considered to have opposite signs of the critical current,
present intriguing phenomena such as the intrinsic frustration
of the Josephson phase over the junction and the spontaneous
generation of a fractional magnetic flux at the discontinuities,
that is, the positions of the jumps in the Josephson phase.13,14

In the present work, we consider the so-called 0-�-0 Jo-
sephson junctions on a finite domain, modeled by a modified
sine-Gordon equation with phase shift of �=� in some re-
gion and zero otherwise. An infinite domain 0-�-0 Joseph-
son junction was first studied by Kato and Imada,15 where
they showed that there is a stability window for the � junc-
tion length in which the uniform zero solution is stable. In
the instability region, the ground state is a nonuniform solu-
tion, which corresponds to a pair of antiferromagnetically
ordered semifluxons. Later, it was shown that there is a mini-
mum facet length of the � junction, above which a nontrivial
ground state exits, which corresponds to the minimum facet
length needed to construct such solutions,16,17 that is the bi-
furcation is supercritical. The possibility of employing a
0-�-0 junction for observing macroscopic quantum tunnel-

ing was discussed in length by Goldobin et al.18 In the pres-
ence of an applied bias current, a 0-�-0 Josephson junction
has a critical current above, which one can flip the order of
the semifluxons15,19,20 and another critical current above
which the junction switches to the resistive state.17,21 Gold-
obin et al.22,23 have also broadened the study of 0-�-0 junc-
tions to 0-�-0 junctions, where 0���� �mod 2��. Here,
we limit ourselves to discuss 0-�-0 junctions only, but ex-
tend it to the case of a finite domain. This is of particular
interest, especially from the physical point of view, since
such junctions have recently been successfully
fabricated,19,20 making a finite length analysis more relevant.

The present paper is structured as follows. In Sec. II, we
discuss the mathematical model that we use to describe the
problem. We then show in Sec. III that when there is no bias
current, the equation has two uniform solutions. Due to the
phase shifts, there will be a region of facet lengths, in which
both uniform solutions are unstable. In this instability region,
a nonuniform ground state will emerge from the uniform
solutions, i.e., a pair of semifluxons is the ground state of the
system. A Hamitonian analysis is performed in Sec. IV to
study the behavior of the non-trivial ground state, both with
and without the presence of an applied bias current. We com-
pare our analytical results with numerical computations in
Sec. V. Finally, conclusions are presented in Sec. VI.

II. MATHEMATICAL MODEL

The dynamics of a finite Josephson junction with
�-discontinuity points is commonly described by the follow-
ing perturbed sine-Gordon equation

�xx − �tt = sin�� + ��x�� − � + ��t, − L � x � L , �1�

where � is a dimensionless positive damping coefficient re-
lated to quasi-particle tunneling across the junction, 2L is the
total length of the junction, and � is the applied bias current
density normalized to the junction critical current density Jc.
Equation �1� is written after rescaling where the spatial vari-
able x and time variable t are normalized to the Josephson
penetration length 	J and the inverse plasma frequency 
p

−1,
respectively.

The function �, representing the presence, or absence, of
the additional �-phase shift, is given by

PHYSICAL REVIEW B 80, 064515 �2009�

1098-0121/2009/80�6�/064515�9� ©2009 The American Physical Society064515-1

http://dx.doi.org/10.1103/PhysRevB.80.064515


��x� = �0, L � �x� � a ,

� , �x� � a ,
� �2�

where 2a is the length of the �-junction, which we refer to as
the facet length. This is our primary bifurcation parameter in
the ensuing analysis.

Equation �1� is subject to the continuity and boundary
conditions

��
a−� = ��
a+�, �x�
a−� = �x�
a+�, �x�
L� = 0.

�3�

The governing Eq. �1� with �=0, subject to the boundary
conditions �3�, can be derived from the Lagrangian

L = �
−L

L 	1

2
�t

2 −
1

2
�x

2 − 1 + cos�� + �� − ��
dx . �4�

As we mainly consider static semifluxons, the existence
of the solutions will be studied through the time-independent
version of �1�, namely

�xx = sin�� + �� − � . �5�

III. EXISTENCE AND STABILITY ANALYSIS OF
UNIFORM SOLUTIONS

It is clear that Eq. �5� admits two uniform solutions
�modulo 2��, namely

�̃ = arcsin �, � − arcsin � ,

for a� �x��L, and

�̃ = arcsin � − �, − arcsin � ,

for 0� �x��a.
As solutions on the whole domain must satisfy the conti-

nuity conditions �3�, we conclude that uniform solutions ex-
ist only when �=0, hence �̃=0 and �̃=�.

Next, we determine the linear stability of the uniform so-
lutions. For this purpose, we substitute the stability ansatz

� = �̃ + �e	tV�x� �6�

into Eq. �1�. Neglecting higher order terms in �, one obtains
the eigenvalue problem

Vxx = �E + cos��̃ + ���V , �7�

where

E = 	2 + �	 �8�

and V is also subject to the continuity and boundary condi-
tions

V�
a−� = V�
a+�, Vx�
a−� = Vx�
a+�, Vx�
L� = 0.

�9�

Because the eigenvalue problem �7� is self-adjoint, the
spectral parameter E �8� will be real valued. One will obtain
that

	
 =
1

2
�− � 
 ��2 + 4E� .

When E�0, it can be concluded that Re�	−��0 and
Re�	+��0. One can also easily calculate that when E�0,
Re�	
��0. From the stability ansatz �6�, it is clear that �̃ is
stable if 	 has nonpositive real parts. Therefore, a solution �̃
is said to be linearly stable if E�0 and unstable when
E�0. Because the stability of a solution is rather determined
by the sign of E, this informs us that an unstable solution at
�=0 will remain unstable in the dissipative system ��0.
Therefore, without loss of generality, in the following we set
�=0.

Due to the finite size of the domain, the eigenvalue prob-
lem �7� will give two sets of eigenvalues, an infinite set that
constitutes the continuous spectrum and a finite set in the
discrete spectrum. For simplicity, in the following sections
we refer to the infinite set the “continuous” spectrum.

A. Linear stability of the uniform 0 solution

First, we discuss the “continuous” spectrum of �̃=0.
Looking for a bounded solution to �7� that satisfies the

boundary conditions at x= 
L, we obtain the solutions

V�x� = �A cos��̂�x + L�� , − L � x � − a ,

B cos��̂x� + C sin��̂x� , �x� � a ,

D cos��̂�x − L�� , a � x � L ,



�10�

where �̂=�−1−E and �̂=�1−E.
Using the continuity conditions �9�, we obtain a system of

four equations with four unknowns, given in a matrix form
by

M1�
A

B

C

D
� = 0,

with a coefficient matrix M1 given in the Appendix.
To obtain a nontrivial V, we require det�M1�=0. An im-

plicit plot of this equation, that is, the “continuous” spectrum
E�a ,L�, for L=1 is shown in the top panel of Fig. 1. Numeri-
cally, it is found that there is no unstable eigenvalue in the
‘continuous’ spectrum, i.e., E�0 for all a. As L increases,
the distribution of E will become dense, as expected.

Next, we find the discrete spectrum of the uniform solu-
tion �̃=0, corresponding to bounded and decaying solutions
of the eigenvalue problem �7�. We obtain the solution

V�x� = �A cosh��̂�x + L�� , − L � x � − a ,

B cos��̂x� + C sin��̂x� , �x� � a ,

D cosh��̂�x − L�� , a � x � L ,



�11�

where �̂=�1+E and �̂ is defined above.
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From the continuity conditions, again we find a system of
four equations. As above, the eigenvalues are obtained by
setting the determinant of the coefficient matrix M2, given in
the Appendix, to zero. An implicit plot of the eigenvalues as
a function of a for L=1 is shown in the bottom panel of Fig.
1.

From Fig. 1, we observe that for a given L, there is a
critical a above which E becomes positive, i.e., �̃=0 be-
comes unstable. In the following, we denote such a critical a
by ac,0. For L=1, ac,0�0.46. As L increases, ac,0 will asymp-
totically approach �

4 , which is the critical length in the infi-
nite domain calculated in Refs. 15 and 17. The relation be-
tween ac,0 and L is implicitly given by the smallest positive
root of

cot�ac,0�tanh�L − ac,0� = 1, �12�

which is obtained by considering the even mode of �11�, for
which E=C=0 and A=D=B cos�ac,0� /cosh�L−ac,0�. For
small L the root can be approximated by

ac,0 =
L

2
−

1

24
L3 + O�L5� . �13�

Plots of ac,0 as a function of L given implicitly by �12�
and its approximation �13� are shown in Fig. 3.

B. Linear stability of the uniform � solution

Following the same steps as we did in the stability analy-
sis of �̃=0, the solution V to the eigenvalue problem �7� that
corresponds to the ‘continuous’ spectrum is given by

V�x� = �A cos��̂�x + L�� , − L � x � − a ,

B cos��̂x� + C sin��̂x� , �x� � a ,

D cos��̂�x − L�� , a � x � L .



�14�

One then finds that the spectrum is given by the zero of the
determinant of the coefficient matrix M3, given in the Ap-
pendix.

A plot of the “continuous” spectrum in the �E ,a� plane is
shown in Fig. 2, from which it is clear that the continuous
spectrum also only consists of stable eigenvalues.

For the discrete spectrum of �̃=� in a finite domain,
bounded and decaying solutions V of the eigenvalue problem
�7� are given by

E
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FIG. 1. Plot of the “continuous” spectrum �top� and the discrete
spectrum �bottom� of �̃=0 as a function of half of the � junction
length a for L=1.
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FIG. 2. The same as Fig. 1, but for �̃=�.
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V�x� = �A cos��̂�x + L�� , �− L � x � − a� ,

B cosh��̂x� + C sinh��̂x� , ��x� � a� ,

D cos��̂�x − L�� , �a � x � L� .


�15�

Due to the boundary conditions �9�, again we obtain a
system of four homogenous equations with a coefficient ma-
trix M4, given in the Appendix.

The bottom panel of Fig. 2 shows the plot of the zeros of
det�M4� in the �E ,a� plane, for L=1. We observe that for a
close to zero, E�0, i.e., �̃=� is unstable. Yet, there is a
critical value of a above which �̃=� is stable. We denote
this critical length by ac,�, which for L=1 is approximately
0.54.

Again, considering the even state of �15�, we have E=C
=0 and A=D=B cosh�ac,�� /cos�L−ac,��, one can show that
ac,� is related to L by the implicit equation

coth�ac,��tan�L − ac,�� = 1, �16�

which, for small L, can be approximated by

ac,� =
L

2
+

1

24
L3 + O�L5� . �17�

Combining Eqs. �12� and �16�, we plot in Fig. 3 the region
in which both the stationary solutions of the sine-Gordon �1�
are unstable. In the instability region, the ground state will be
nonuniform.

C. Symmetry

Comparing Figs. 1 and 2, we observe that they are the
same by reflection with respect to the line a=L /2=1 /2, that
is, the stability of �=0 at the half facet length a is the same
as the stability of �=� at the half facet length �L−a�. This
symmetry occurs because, for the particular solutions, our
Neumann boundary conditions at x= 
L �3� can be replaced
by periodic boundary conditions

��− L� = ��L�, �x�− L� = �x�L� . �18�

For the periodic boundary conditions, the governing Eq. �1�
is symmetric by rotation, i.e., cyclic symmetry, and �→�
+�. Using the symmetry, one can also conclude that

ac,� = L − ac,0, �19�

for any L.
Due to the similarity to a periodic system, our problem in

the undriven case �=0 is the same as that considered in Ref.
24. As a consequence, Eqs. �11� and �12� �and hence Eqs.
�15� and �16�� above are the same as Eqs. �3� and �4� of Ref.
24. Despite the similarity, finite and periodic junctions also
have some fundamental differences. These include the fact
that continuous spectrum is present in periodic junctions
with band gap structures possibly formed in their plasma
wave frequency �see, e.g., Ref. 25�. Moreover, we conjecture
that all the “continuous” eigenfrequencies of a finite Joseph-
son junction can be parasitic that may need to be avoided in
finite Josephson junction based devices and that they may be
measured using microwave spectroscopy.26–28 This issue will
be addressed in a future publication.

IV. GROUND STATES IN THE INSTABILITY REGION

In the following, we analyze perturbatively the ground
states of the Josephson junction in the instability region. Our
analysis, based on an Euler-Lagrange approximation, is car-
ried out for a half facet length a close to one of the critical
lengths ac,0, ac,�.

A. Case of 0�a−ac,0™1

1. Existence analysis

For a close to ac,0, we approximate ��x� by

��x� = B� cos�ac,0�
cosh�L − ac,0�

cosh�x + L� , a � �x� � L ,

cos�x� , �x� � a ,



�20�

where B=B�t� and ac,0 is given by �12�. This expression of �
is an exact solution of the linearization of �5� for a=ac,0 with
an arbitrary parameter B, i.e., we approximate the ground
states by �=V�x�, where V�x� is the first even solution of the
eigenvalue problem �7� with E=0 and a=ac,0.

Substituting the ansatz �20� into the Lagrangian �4�, writ-
ing a=L /2−kL3, k�1 /24, and expanding about L=0 yields

L = �L − L3/4�Bt
2 − H , �21�

where the subscript represents a derivative and

H =
L3B2

12
	24k − 1 −

B2

3
�6k − 1�


+ 2L	B� + 1 − L2�B�

8
+ 2k�
 , �22�

is the potential energy of the system.
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a c,
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2
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1
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No stable uniform
solution

Region a > L is
unphysical
(not relevant)

FIG. 3. �Color online� Instability region of the uniform solutions
�̃=0 and �̃=�. Solid boundary curves are given by Eqs. �12� and
�16�. Dashed lines are analytical approximations for small L given
by �13� and �17�. Dashed dotted lines are analytical approximations
for large L, ac,0=� /4, and ac,�=L−� /4.
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The Euler-Lagrange equation is derived from the La-
grangian �21� by �t��Bt

L�−�BL=0, giving

Btt =
− 1

2L − L3/2
HB. �23�

The time independent solution B=B0
�2,3� is given by the cubic

equation HB=0, or

��B0� = −
2L2B0�B0

2�12k − 2� + 3 − 72k�
9�L2 − 8�

. �24�

For a general value of ��0, we solve the cubic equation
using Nickalls’ method29 to obtain

B0
�n� = 2� cos�� + 2�n − 1��/3�, n = 1,2,3, �25�

where

� =�1 − 24k

2 − 12k
, � = arccos�− yN/h�/3,

yN = �2L − L3/4��, h = −
1

9
L3�1 − 24k�� .

When �=0, the expressions for B0
�n� are simplified to

B0
�1,2� = 
�3�24k − 1�

2�6k − 1�
, B0

�3� = 0. �26�

The nonzero roots B0
�1,2� represent a pair of antiferromagneti-

cally ordered semifluxons.
If we study further, the three roots �25�, we find that they

do not persist for all �. If � is decreased �increased� away
from zero, then there is a critical value of the bias current �
at which B0

�1��B0
�2�� collides with B0

�3� in a saddle node bifur-
cation. Here, we denote this critical value of � by �c,1. From
our current approximation, �c,1 can be calculated from the
condition yN

2 =h2,29 which gives

�c,1 =
2�2L2�24k − 1�3/2

9�6k − 1�L2 − 8�
. �27�

This critical value can also be obtained by solving d�
dB0

=0
from �24� to find B0c and substituting the values for B0
=B0c back into �24� to give �c,1=��B0c�.

2. Stability analysis

To study the stability of the stationary solutions �25�, we
easily check that when k�1 /24, H is locally minimized by
B0

�1,2�. To obtain the critical eigenvalue of the stable solu-

tions, we write B=B0
�n�+�B̃ and substitute this into the Euler-

Lagrange Eq. �23� to obtain

B̈̃�t� = � − 1

2L − L3/2
�B

2H�
B=B0

�n�
B̃ . �28�

The critical eigenvalue of B0
�n� is then given by

E = � − 1

�2L − L3/2�
�B

2H�
B=B0

�n�
, �29�

that is, the negative square of the oscillation frequency of

B̃�t�.

B. Case of 0�ac,�−a™1

To discuss the existence and stability of ground state so-
lutions when a is close to ac,�, we repeat the above calcula-
tions. We exploit the symmetry discussed in Sec. III C, that
for the nonuniform ground state, the Neumann boundary
conditions �3� can be replaced by periodic boundary condi-
tions �18�. Using this symmetry, we obtain that if ��x ;a� is a
ground state solution of the sine-Gordon equation with the �
facet length 2a, then

��x;L − a� = � − ��L − �x�;a� . �30�

Thus, the stability of the ground state in the limit 0�ac,�
−a�1 can be deduced from the case 0�a−ac,o�1 using
this symmetry argument since ac,�=L−ac,0 �19�.

V. DISCUSSION

To check our analytical results, we perform numerical cal-
culations and simulations. We numerically solve the time-
independent governing Eq. �5�, subject to boundary condi-
tions �3� using a Newton-Raphson method, where we
discretize the problem using central differences with a rela-
tively fine spatial discretization. To numerically study the
stability of a solution, we then discretize and solve the cor-
responding linear eigenvalue problem �cf. Equation �7��.

First, we study the existence and the stability of the non-
zero ground state in the absence of an applied bias current.

In the top panel of Fig. 4, we plot ��0� and ��
L�, of the
nonuniform ground states as functions of a for �=0 and L
=1. Due to the cyclic symmetry discussed in Sec. III C, we
observe that the curves are symmetric under rotation by �
radians, with the center of rotation �a ,��= �L /2,� /2�. In the
same figure, we also depict our analytic approximation �26�,
where one can see a rather good agreement for a near to ac,0
and ac,�.

In the bottom panel of the same figure, we depict the
critical eigenvalue of the nonzero ground states presented at
the top panel. At the critical facet lengths, the eigenvalues
are certainly zero due to the change of stability with the
uniform solutions �=0,�. Our analytical approximation
�29� is plotted in the same figure, from which we see that
when the half facet length a is close to one of the critical
values ac,0 or ac,�, the numerics are indeed well approxi-
mated by our analytical result.

Next, we study the influence of an applied bias current to
the existence and stability of the nonuniform ground state. In
the following, we particularly consider a=0.495 and without
loss of generality the “positive” ground state, ��0��0. The
case of negative ��0� can be obtained simply by reflection
due to the symmetry �→−� and �→−�.

In the top panel of Fig. 5, we plot our numerical ��0� as
a function of the applied bias current � for L=1 and a
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=0.495. We use a path-following method starting from �
=0 and ��0��0.16.

First, we decrease the applied bias current. As � is re-
duced, the value of ��0� also decreases up to a certain value
of bias current; the solution cannot be continued further, it
terminates in a saddle node bifurcation. Using our path fol-
lowing method, the saddle-node bifurcation is indeed due to
a collision with a nonuniform solution bifurcating from �̃
=0, as predicted by our analytical result. The value of �
�0 at which the bifurcation occurs is the aforementioned
�c,1 �27�. Comparisons between the numerics and the analyti-
cal results of �c,1 are depicted at the middle panel of Fig. 5.

Besides decreasing �, one can also increase it. As � in-
creases, the value of ��0� also increases. As the bias current
is increased further, a saddle-node bifurcation occurs. We
denote this critical value of bias current by �c,2. Using our
path following algorithm, we can follow the upper branch of
the bifurcation and deduce that it corresponds to a collision
between the nonuniform solution and the solution which bi-
furcates from �̃=�. Using the cyclic symmetry argument,
we explain the bifurcation using our analytical results �25�.
Plotted in the top panel of Fig. 5 is our ��B0� given by Eq.
�24�, properly shifted by �, for the half facet length �L−a�.

The influence of the � facet length 2a on the existence dia-
gram is indicated by the arrows, i.e., as a increases �de-
creases� toward ac,� the two lobes move according to the
arrows �and vice versa�. In the middle panel of Fig. 5, we
plot the second critical bias current, �c,2, as a function of a.
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FIG. 4. �Color online� �Top� Plot of ��0� and ��
L� of the
nonuniform ground state obtained from numerical calculations
�solid lines� as a function of half of the facet length a. Comparison
with our analytical approximations �dashed lines� is also presented.
�Bottom� The critical eigenvalue E of the solution depicted in the
bottom panel.
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FIG. 5. �Color online� The top panel depicts the existence dia-
gram of the ground state. Plotted is ��0� as a function of �, ob-
tained from numerical computations �solid lines� for a=0.495 and
L=1. Shown in red is ��0� as a function of a that corresponds to
unstable solutions. The upper and lower red branch corresponds to
solutions �̃=� ,0, respectively. The middle panel shows the critical
bias currents �c,1�0 and �c,2�0 as a function of a for L=1. The
bottom panel presents the critical eigenvalue of the nonuniform
ground state as a function of � for a=0.495 and L=1. Analytical
approximations are also presented in dashed and dash-dotted lines.
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Again, due to the cyclic symmetry, �c,2 can be obtained from
�c,1 by rotating the curve by � radians, with the center of
rotation at �a ,�c,1�= �L /2,0�.

In the infinite junctions discussed in Refs. 15, 17, and
19–21, it is shown that there are two critical currents, one
critical value, which is related to a rearrangement of semi-
fluxons due to the bias current pushing vortices toward each
other, and another value, which corresponds to vortex break-
ing due to the bias current stretching vortices apart. Here, our
�c,1 and �c,2 can correspond to either one, depending on the
magnitude of �c,1 and �c,2. If ��c,n�� ��c,3−n�, n=1,2, then
�c,n and �c,3−n will correspond to vortex breaking and vortex
rearrangement, respectively.

In the bottom panel of Fig. 5, we plot the critical eigen-
value of the nonuniform ground state as a function of � for
a=0.495 and L=1. Interestingly, we observe that the lowest
eigenvalue is attained at a nonzero bias current. This indi-
cates that a nonuniform ground state can be made to be
“more stable” by applying a bias current. Only if a=L /2
would a pair of semifluxons with �=0 be most stable. On the
same figure, we also plot our approximations �29�, which
qualitatively agree with the numerical results.

Studying further the saddle-node bifurcation between the
nonuniform ground state and �̃=� in Fig. 5, we observe that
it is not the typical collision that leads to the definition of �c,2
for any L. When L is relatively large, we find that the upper
branch does not necessarily correspond to a uniform solu-
tion. In Fig. 6, we consider another case for L=10 and a
=3.

Starting on the middle branch from �=0 and �̃�0��3, we
then increase the bias current. At the critical bias current �c,2,
i.e., ��0.6, we have a saddle-node bifurcation. Using our
path following code, we follow the branch beyond the bifur-
cation point, from which we obtain that the branch does not
correspond to a uniform solution. In the middle panel of Fig.
6, we plot the corresponding solutions for some values of �.
Considering the profile ��x� at �=0, we could conclude that
it corresponds to a pair of semifluxons each bound to a
fluxon. The profile is similar to the so-called semifluxon type
3, defined in Ref. 17 for an infinitely long 0-� Josephson
junction. From our numerical computations �not shown
here�, the two branches seem to be distinguished by the abil-
ity of the junction of length 2L to support an additional
fluxon on each side. The first critical value �c,1 corresponds
to the collision between the nonuniform ground state and
�=0. The bottom panel presents �c,1 and �c,2 as a function of
a for L=10. An approximate expression for the critical cur-
rents is presented in dashed lines given by15,30

�c,1 = −� 128

27�� + 2�
�a − ac,0�3/2,

�c,2 =� 128

27�� + 2�
�ac,� − a�3/2, �31�

where ac,0�� /4 and ac,���L−� /4�.
One may ask about using finite 0-�-0 Josephson junctions

to observe macroscopic quantum tunneling and to build qu-
bits. To answer the question, the reader is addressed to Refs.

18 and 31, which consider quantum tunneling of a semi-
fluxon in an infinite 0-�-0 junction and finite 0-� junction,
respectively. It was concluded that both setups provide a
good playground to observe macroscopic quantum tunneling.
As for building a qubit, it will depend on the ratio between a
and L. If a�L, the system considered here is not a promising
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FIG. 6. �Color online� Top panel is the same as the top panel of
Fig. 5, but for L=10 and a=3. Middle panel shows some of the
corresponding solutions of the top branch for different values of �.
Bottom panel shows �c,1�0 and �c,2�0 as a function of a. Solid
and dashed lines are numerical calculations and analytical approxi-
mations �31�, respectively.

EXISTENCE AND STABILITY ANALYSIS OF FINITE… PHYSICAL REVIEW B 80, 064515 �2009�

064515-7



one, because it requires the junction length to be very small
and in that small length region the flux is too tiny to be
detected by current technology.31 If L�a and a is small
enough, finite 0-�-0 junctions can be a good system for
qubits.18 It is then of interest to characterize the minimum
value of L at which a finite 0-�-0 junction switches from
being a good to a bad qubit system.

VI. CONCLUSION

We have investigated analytically and numerically 0-�-0
Josephson junctions on a finite domain. We have shown that
there is an instability region for uniform solutions in which
semifluxons are spontaneously generated. Using an Euler-
Lagrange approximation, it has been shown that the exis-
tence of static semifluxons depends on the length of the junc-
tion, the facet length, and the applied bias current. In
addition the critical eigenvalue of the semifluxons has been
discussed. Numerical simulations have been presented, ac-
companying our analytical results.

In future investigations, the two dimensional version of
Josephson junctions with phase-shifts, �=� in some areas
and �=0 elsewhere, will be considered. It is also of interest
to apply results presented herein to 0-�-0 junctions and com-
pare them with the readily available experimental data.19

These are works in progress and will be reported in future
publications.
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APPENDIX: COEFFICIENT MATRICES

The coefficient matrices Mn , n=1,2 ,3 ,4, used to derive
the ‘continuous’ and the discrete spectrum of �=0,� are
given by

M1 = �
cos��̂�L − a�� − cos��̂a� sin��̂a� 0

�̂ sin��̂�L − a�� − �̂ sin��̂a� − �̂ cos��̂a� 0

0 cos��̂a� sin��̂a� − cos��̂�a − L��

0 − �̂ sin��̂a� �̂ cos��̂a� �̂ sin��̂�a − L��
� , �A1�

M2 = �
cosh��̂�L − a�� − cos��̂a� sin��̂a� 0

�̂ sinh �̂�L − a� − �̂ sin��̂a� − �̂ cos��̂a� 0

0 cos��̂a� sin��̂a� cosh��̂�a − L��

0 − �̂ sin��̂a� �̂ sin��̂a� �̂ sinh��̂�a − L��
� , �A2�

M3 = �
cos��̂�L − a�� − cos��̂a� sin��̂a� 0

�̂ sin��̂�L − a�� − �̂ sin��̂a� − �̂ cos��̂a� 0

0 cos��̂a� sin��̂a� − cos��̂�a − L��

0 − �̂ sin��̂a� �̂ sin��̂a� − �̂ sin��̂�a − L��
� , �A3�

M4 = �
cos��̂�L − a�� − cosh �̂a sinh��̂a� 0

�̂ sin��̂�L − a�� �̂ sinh��̂a� − �̂ cosh��̂a� 0

0 cosh��̂a� sinh��̂a� − cos��̂�a − L��

0 �̂ sinh��̂a� �̂ cosh��̂a� �̂ sin �̂�a − L�
� . �A4�
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